When epsilon-expansion of hypergeometric functions is expressible in terms of multiple polylogarithms: the two-variables examples
نویسندگان
چکیده
∗Speaker. †This work was supported in part by the German Federal Ministry for Education and Research BMBF through Grant No. 05 HT6GUA, by the German Research Foundation DFG through the Collaborative Research Centre No. 676 Particles, Strings and the Early Universe—The Structure of Matter and Space-Time, and by the Helmholtz Association HGF through the Helmholtz Alliance Ha 101 Physics at the Terascale.
منابع مشابه
On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters
We continue our study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we apply the approach of obtaining iterated solutions to the differential equations associated with hypergeometric functions to prove the following result: Theorem 1: The epsilon-expansion of a generalized hypergeome...
متن کاملAll order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...
متن کاملTowards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters
We prove the following theorems: 1) The Laurent expansions in ε of the Gauss hypergeometric functions 2F1(I1 + aε, I2 + bε; I3 + p q + cε; z), 2F1(I1 + p q + aε, I2 + p q + bε; I3+ p q + cε; z) and 2F1(I1+ p q +aε, I2+ bε; I3 + p q + cε; z), where I1, I2, I3, p, q are arbitrary integers, a, b, c are arbitrary numbers and ε is an infinitesimal parameter, are expressible in terms of multiple poly...
متن کاملAll-Order ε-Expansion of Gauss Hypergeometric Functions with Integer and Half-Integer Values of Parameters
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...
متن کامل/ 04 06 26 9 v 1 3 0 Ju n 20 04 Series and ε - expansion of the hypergeometric functions
Recent progress in analytical calculation of the multiple {inverse, binomial, harmonic} sums , related with ε-expansion of the hypergeometric function of one variable are discussed. 1. In the framework of the dimensional regular-ization [1] many Feynman diagrams can be written as hypergeometric series of several variables [2] (some of them can be equal to the rational numbers). This result can ...
متن کامل